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I INTRODUCTION

A. BACKGROUND

The detection of a known deterministic signal in additive Gaussian noise is
solved using a correlator or matched filter [45, 55, 62, 12 Part I]. For the case
of a random signal in white noise, a two stage process is utilized to first estimate
the signal and then correlate this estimate with the received waveform. This
detection scheme is referred to as the estimator-correlator [47-50, 53, 12 Part
III]. The advantage of this later approach is its practical implementation
structure; ie, the best obtainable estimate of the signal is used in the correlation
stage. As noted by Kailath [54], however, the method described in [50] fails when
the signal and noise are correlated and when signals have nonzero means. These
limitations were overcome for continuous-time processes by Kailath [53, 56]
using the innovations representation. In addition, the approach applied to non-
Gaussian desired signal processes. This detection problem is expressed as

HI: x(t) = s(t) + w(t) (1-1a)

HO: x(t) = w(t) (1-1b)

where Hi i=0,1 are the hypotheses for signal absent and present, respectively; s(t)
is the (not necessarily Gaussian) random signal and w(t) is Gaussian white noise.
Under H I, the optimal MMSE causal estimate of s(t) is

s(t) = E [s(t)l x(t'), t' < t] (1 -2)

Using the definition of the innovations [57]; ie.

v(t) = x(t) - ^(t), (1-3)

the innovations theorem for continuous-time processes (ic, the covariance of v(t)
and w(t) are identical), and the property that v(t) is Gaussian if w(t) is Gaussian
[53], Kailath transformed the detection problem of eq (1-1) to the equivalent
detection problem:



HI: x(t) = t(t) + v(t) (l-4a)

Ho: x(t) = v(t) (1-4b)

In this form of the detection problem, s(t) is viewed as a conditionally-known
signal and the likelihood ratio becomes [53]

LR = exp [9- •(t) x(t) dt - 1/2 1 P2(t) dt]. (1-5)

This likelihood ratio has the same form as the estimator-correlator for the
Gaussian signal in the white, Gaussian noise case except that the first integral in
eq(1-5) is an Ito integral. Eq(1-5) is significant because it shows the structure of
the non-Gaussian detection problem. In addition, although eq(1-5) was derived in
[53] assuming s(t) and w(t) as statistically independent, this restriction was later
[56,58] relaxed to "future w(.) independent of past s(.)"; ie. the signal could be
correlated with past noise. It is interesting to note that the innovations approach
does not use a Karhunen-Loeve exparnsion which requires s(t) and w(t) to be
statistically independent. This later generalization indicates that the innovations
approach may offer a robustness in detection problems involving feedback,
multipath, etc.

Unlike the continuous-time case, discrete innovations processes do not
retain the property of Gaussianity unless both w(t) and s(t) are Gaussian. In
addition, the covariance of the innovations is not equivalent to that of the white
noise [53,57]. Thus, the likelihood ratio for the discrete case does not have an
estimator correlator structure to provide a test statistic. For this case, a
likelihood ratio using discrete-time innovations processes was developed [4, 6].
In [41, it is shown that for non-Gaussian processes, this likelihood ratio, called the
Innovations-Based Detection Algorithm (IBDA), is a close approximation to the
likelihood ratio for this detection problem. Furthermore, the structure of the
likelihood ratio is obtained by assuming a specific parametric model of the
observation processes for each hypothesis and designing a prediction error
filtering stage for each. Adaptive algorithms are then used to estimate the
unknown model parameters. Since the order of the model under Hi is greater
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than that under H0 (and with possibly distinct coefficients) the error output from
the filter designed for Ho given that HI is true will be greater than the error
output from the filter designed for Hi. These error differences are used in the
likelihood ratio to raise or lower its value relative to the threshold level. In [59],
it is shown that this likelihood ratio is a generalization of several important
special cases. These include (1) the detection of a deterministic signal in additive
white Gaussian noise, (2) the detection of a non-white Gaussian signal process in
additive white Gaussian noise, (3) the moving target detection (MTD) algorithm
for the detection of a deterministic signal in non-white Gaussian noise [60, 61]
and (4) the detection of a non-white Gaussian signal process in additive non-white
Gaussian noise [62]. It is also shown [59] that the IBDA contains the algorithm
developed [63] for the detection of a deterministic signal in additive non-white
Gaussian noise of unknown correlation statistics. An experimental investigation
using two implementations of the IBDA was conducted in [8] for an airport
surveillance radar application and performance comparisons made with three
MTD algorithms.

Several early analyses involving model-based parametric detection
approaches are presented in [40, 44, 62, 64] with special notice given to [51].
Most of the interest, however, appears to have taken place within the past few
years [4, 6, 8, 14, 21, 23, 41, 43, 45, 63]. The principal advantage of
characterizing the observation processes for each hypothesis via a parametric
model is that well known algorithms can be utilized to estimate the parameters.
In [45], a likelihood ratio test was considered for two known autoregressive (AR)
models. In [411, a more general formulation considers AR and autoregressive-
moving average (ARMA) models to detect a Gaussian signal in white Gaussian
noise, both with unknown statistics. Thus, the IBDA [4, 6] mentioned above
considers the more general problem of detection on a non-Gaussian signal in non-
white plus white noise. As noted in [16]. however, different modeling approaches
will generally yield differences in receiver performance. In addition, the
problem of modeling observation processes in this detection scheme is more
difficult than model-fitting a time series process. This is due to the fact that in
the detection problem, one set of observation data is given and the problem is to
determine whicP of the two filters is estimating the parameters properly. In [14,
16], Zhang investigated the detection performance improvement over the IBDA
[6] in a radar application, when 'a priori' information was used to predetermine
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the process parameters; specifically, a reference channel which provided data
from range cells adjacent to the "test cell" was used to determine the filter
coefficients under Ho. A significant detection performance improvement over
the IBDA was reported. It thus appears that performance improvements can be
made in the model-based detection schemes through investigations of alternative
algorithms and implementation schemes for the detection problem with unknown
statistics.

In the development of the model-based detection approaches, the emphasis
is placed on characterizing the observation data received under each hypothesis
with approximate models. If the models fail to fit the physical processes,
performance degradations will result. Model fitting of observation data via time
series analysis has received considerable attention [19, 65, 66, 67, 68, 69, 71, 72].
The emphasis in the analysis proposed here will be the development of
multichannel model-based detection approaches. Multichannel time series
analyses have also been investigated [28, 35, 66 Part II, 67, 69, 71, 72] with
emphasis in the areas of geophysics, biophysics and economics. Furthermore,
multichannel algorithms for parameter estimation have received some attention
[3, 9, 24, 25, 31, 70, 73]. The prime consideration for this analysis will be the
investigation of the potential for improved detection performance of multichannel
model-based detection. Thus, the applicability of multichannel time series models
and the performance of multichannel parameter estimation algorithms to the
detection problem proposed here is essential.
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B. RESEARCH OBJECTIVE

The proposed investigation will consider the binary multichannel detection
problem for an unknown random signal vector in additive non-white interference
plus white Gaussian noise. The observation processes will be assumed to have an
arbitrary correlation in time and space (ie, across the channels). Initially,
Gaussian random processes will be considered, but a generalization to non-
Gaussian processes will be developed.

The principal research objective is the investigation of multichannel model
based detection methods utilizing estimation to determine their performance
relative to the single channel case. In this approach to the detection problem, it is
assumed that the underlying physical mechanisms which give rise to the observed
random processes obtained under each hypothesis can be represented by a
mathematical model which approximates its statistical characteristics. We
therefore make a distinction between the model of the process (i.e., synthesis) and
the estimation process (analysis). Specifically, we will give prime consideration
to multichannel autoregressive processes [9, 24, 25, 28-31] as the process model
description in the proposed investigation. The consideration of the multichannel
approach is based on the contention that the coefficients of the AR processes are
distinct for each of the two hypotheses (i.e., signal present or absent). The
approach used in the model based detection method is the selection between the
hypothesis based upon measures which are sensitive to the differences in the
process coefficients for each hypothesis. Therefore, a likelihood ratio is sought
which is sensitive to differences between the parameters of the processes. In this
context, we view the multichannel processes arising from physical mechanisms
such as those which may yield additional (although partially correlated)
information about the processes. From -the model based approach, this new
information can be utilized to provide a better distinction between the process
parameters under each hypothesis. The extraction of this new information is
achieved in the processing of the observation data to remove the redundant (i.e.
correlated) information. This is achieved via estimation methods which "whiten"
the data in time and space (i.e., channels). These uncorrelated processes contain
all the useful information about the processes in a compact form and are utilized
to determine a sufficient statistic for the hypothesis determination; i.e., a
likelihood ratio can be developed in terms of these transformed processes since
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they are obtained via a causal and causally invertible transformation of the
original observation data. As shown in sections IV and V, these processes enable
one to efficiently perform a calculation of the likelihood ratio. Furthermore, the
likelihood ratio considered here has an implementation framework amenable to
adaptive processing methods.

Examples of application areas can be found in radar technology,
biomedical applications, geophysical research, image processing, data
compression, speech analysis and channel equalization. In the radar application,
we may consider the processing of multi-sensor pre-detection data or dual-
polarization data as the multichanne. processes. A significant contribution of the
detection algorithm considered here is the capability to utilize signal processing
procedures to deal with partially correlated observation data. For the active
radar case, we view the multichannel observation data as processes which arise
through a simultaneous excitation of the surveillance volume with a multiplicity
of waveforms. The approach here is to characterize these processes with a
mathematical model (such as a multichannel AR description) and to implement a
likelihood ratio whose magnitude is sensitive to the difference between the model
parameters under each hypothesis. For passive detection applications, we view
the processes as arising from internal physical mechanisms which give rise to the
emission of radiation which may, in general, contain partial correlation when
observed over specific bands. In biomedical applications, we might consider the
processing of EEG waves where we may seek to detect a weak brain potential
among other strong brain signals. For the purpose of validating the theoretical
results developed here, at a later time, consideration will be given to the
detection problem utilizing the data collected from three co-located radar
systems simultaneously operating at three distinct frequencies. The resulting
observation data will, however, be treated as partially correlated across the three
channels. Performance evaluations will be determined in terms of receiver
operating characteristics. Both analytic as well as Monte Carlo approaches will
be utilized in the analysis.

A likelihood ratio for this detection problem with stationary, Gaussian
signal and interference processes has been developed in section V. In section VI,
implementation architectures for the likelihood ratio are briefly presented.
Section VII outlines the future investigation. At a later time, we shall address the
use of adaptive methods to consider the detection problem when the statistical
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processes are unknown and time varying. The adaptive procedure -is also
approached by postulating an underlying parametric model for the observation
processes. This approach enables the use of various adaptive algorithms to
estimate the model coefficients and thus utilize these estimates to update the filter
coefficients. The adaptive procedures are utilized to retain a robustness in non-
stationary processes.
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11. THE DETECTION PROBLEM

In the multichannel simple binary detection problem, the discrete iive4

baseband waveforms are

HI: I (n) = (n) + r. (n) +.w (n) n

Ho: 2 (n) = (n) + -w (n) n 1,2,...,N (2-1)

where I (n) is a zero mean, stationary Jxl received observation vector consisting
of J channels and i (n), g (n) and w (n) are zero mean, complex Gaussian random
Jx1 vector processes describing the signals, non-white noise and white noise,
respectively. We will assume that the white noise process is uncorrelated with
,I(n) and r, (n) and is furthermore uncorrelated with itself in time, but not across
channels, so that

{[0] n~k
E [A (n) wH (k)] = to] n~k (2-2)IRww(O) n=k

where Rww(O) is the JxJ correlation matrix of &(n). The vector processes s(n)
and g(n), however, contain an arbitrary correlation in time and between channels.
We will consider the condition where 0(n), g(n) and W(n) are jointly wide-sense
stationary processes. The correlation matrix for the observation data expressed
in index ordered form [1] is

R a= E[&I,NILI,N] (2-3)

where
T

AIN = [AT (1) xT (2)... T (N)] (2-4a)

I2T(k) = [x1(k) x2 (k)...xj(k)]. (2-4b)

Under the condition of stationarity, R, is a Hermitian, positive semi-definite
matrix. Furthermore, this matrix can be written in block form as



Under the condition of stationarity, R& is a Hermitian, positive semi-defiite

matrix. Furthermore, this matrix can be written in block form as

H H HRxx(0) Rxx(-1) ... Rxx(-N+l) Rx(0) R;l...Rx(-l)

RB = Rxx(l) Rxx(O)...Rxx(-N+2) = R0.(-1) Rxx(O)"...R0 (N-2)

Rxx(N-l) RxJN-2) ... Rxx(0)J lxx(-N-l) ROxx(-N+2) ...ROxx(0)_ -j

(2-5)

where

Rxx (I) =E fx (k) xH (k-I)] k = 1,2,...,N
I = 0, ± I,..., ± (N-i) (2-6)

and the last expression in eq (2-5) results because Rxx(I) = RHxx (-I). It is noted,
however, that each block matrix of RA& is not Hermitian; i.e., Rxx (I) * RHxx (I)

for 1#0. We also note that RXX is block Toeplitz. The superscript B denotes that
R,& is written in block form where each block as defined in eq (2-6) is a JxJ
correlation matrix over the J channels.
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III. AUTOREGRESSIV PROCESS MODELS

A. DEFINITION OF THE AR PROCESS

In this analysis, the multichannel observation processes obtained under
hypotheses Hi with i = 0, 1 are assumed to be generated by multichannel
autoregressive processes. For the single channel case, analyses have been
conducted [26,271 which indicate the appropriateness of such models for radar
applications. For the multichannel case, similar investigations remain as a
potential area for future research.

The multichannel Jx 1 vector process (nIHi) with i = 0, 1 is expressed as

Mi H

x(nIHi) =- I A Mi(klHi)X(n-k) + u(nlHi) i = 0,1 (3-1)
k=l

H
where AMi(klHi) is the kth JxJ matrix coefficient for an AR process of model

order Mi. We note that it is expressed in terms of the Hermitian operation for
notational convenience, but is not treated here as a Hermitian matrix. The vector
uL(n) is a Jx1 white noise driving vector which, in general, has an arbitrary
correlation across the J channels so that

{[0] 1•0
E [u (n) lH(n-I)= RJ() I=0. (3-2)

Ruu (0) is a JxJ covariance matrix of the vector process u(n) and may have off-
diagonal components. Since u (n) is uncorrelated in time, but retains an arbitrary
correlation across channels, then with wide-sense joint stationarity of the channel
processes assumed, we can consider

u (n) = Cy (n) (3-3)

10



where the J x J matrix C is a constant matrix. This matrix gives rise to the
channel correlation on U (n). The vector y. (n) is a Gaussian white noise vector
uncorrelated in time and across channels such that

E [y (n) yH(n-D) ]= 1 D I0 . 3 4

v 1--o.(3-4)

The elements of the diagonal matrix Dv are the variance terms associated with the

white noise driving term on each channel. And so, from eq (3-3) we can obtain
the zero-lag correlation matrix (assuming wide-sense stationarity)

Ruu (0) = E [IL (n) IL H(n)] (3-5a)

= E [ C (n) y H(n) CH] (3-5b)
= CDvCH. (3-5c)

We could assume unit variance on all elements of Dv without loss of generality so
that Dv = I and eq(3-5c) implies the Cholesky decomposition. The significance
of this discussion is that the correlation matrix Ruu(O) is a constant matrix

associated with the white noise driving term u (n). The correlation between the
channel elements of U (n) gives rise to the off-diagonal terms in Ruu(O). It will be

shown that this correlation causes the error output vector g(n) resulting from a
MMSE estimation process to retain some residual correlation across the J
channels. Since Ru, (0) expressed in eq (3-5) is Hermitiant, positive semi-
definite, we can perform an LDLH decomposition* such that

Ruu(0) = LuDuLuH (3-6)

where Lu is unit diagonal lower triangular. Solving for Du, we obtain

Du - Lu-IRuu (0) (Lu-I)H (3-7a)

= E [Lu-IU (n) 0H (n) (Lu-A)H] (3-7b)

t It is noted that in general the correlation matrix Ru (0 is not Hermitian for 100.
*The motivadon for using the LDLH decomposition is noted at the end of section IV.
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= E [Z (n) I H (n)] (3-7c)
where

z (n) = Lu-I u (n) (3-8)

so that z. (n) is a J x I vector containing uncorrelated elements. It represents an
underlying process of the multichannel AR process which can be viewed as a
"spatially-causal" white noise driving term. Since Lu- 1 is also lower triangular
unit diagonal, it is invertible so that from eq (3-8)

u (n) = Lu z (n). (3-9)

Eq (3-9) indicates that u (n) , originally defined in eq (3-3) , could identically be
generated by the Z (n) process through the transformation matrix Lu; i.e.,eq (3-1)
can be written in the equivalent form

Mi H
z(nIHi) = - Y A Mi(klHi)A(n-k) + Lu(Hi)z(nlHi) i = 0,1 (3-10)

k=l

where Lu (Hi) denotes the specific matrix Lu under hypothesis Hi. In section IV a
two stage multichannel prediction error filter is considered which uses estimates

H
of the AMi(klHi) coefficients to obtain an approximation of u (n) in the first stage

and an estimate of Lu-I to obtain an approximation of the temporally and spatially
uncorrelated process z (nlHi).

B. THE YULE-WALKER EQUATION
H

The relationship between the matrix coefficients AM(k), the covarince

matrix [.f]M of the forward AR driving noise vector and the known correlation

matrix RA& noted in eq (2-3) can be expressed [I] as

AH[fx] = {[1f]H [0] ...[0]} (3-11)

where

12



H H H H (3-12)
AM = [I AM(I) AM(2 ) ... AM(M)].

The matrix [ Ft] is the reversed order correlation matrix of [Ru]; i.e., the

correlation matrix obtained with the time order of the vector AI,N from eq (2-4)

reversed. The corresponding equations for the stationary, backward AR process

is expressed as

H H (-3
DW{AIIO=111...[O [L0 M (3-13)

where
H H H

DK = [BM(M)...BM(l) I] (3-14)

and [I•b]M is the covariance matrix of the backward AR driving noise vector.

Eqs(3-1 1) and (3-13) are the augmented forms of the multichannel Yule-Walker

equations and are presented in more detail in [38].
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IV DATA TRANSFORMATION VIA LINEAR. 12•EWMTWN.....

The output of a multichannel linear prediction error filter of order P is
expressed as

l(n) IL(n) - J(nln-l) <4-1a)

= x(n) + A AP(k) 1L(n-k) (4-!b)

- • Ap(k) A(n-k) (4-1c)
k=O

H
where Ap(k) k=l,2,...,P are the matrix coefficients of the linear predictor,

H
Ap (0) = I the JxJ identity matrix, the subscript P distinguishes the matrix

coefficients as belonging to a filter of order P, and H denotes the Hermitian
operation (i.e., the complex conjugate transpose operation).

In Appendix A, it is shown that under the condition that the matrix
coefficients in eq (4-1) satisfy the multichannel normal equations,

E [f (n) F H (n-k)] = [0] k>0 (4-2)
and the output vector process f,(n) is a MMSE process. Eq (4-2) is the
orthogonality principal and indicates that the sequential outputs of the MMSE
filter are orthogonal in time. The multichannel normal equations which are to be
satisfied to maintain this condition are expressed as

ArH ] = {[yf]H [0] ... [0]} (4-3a)

where
H H H H()Ap - [I Ap (1) AH (2) AHp) (4-3b)

E[_I,N -11,N] = E[•jN, 1 HI (4-3c)

and
[Ef]p = Ef(n)eH(n)] = RM(O). (4-3d)

14



(xx] is the reversed order known correlation matrix of eq (2-3); i.e., the

correlation matrix expressed with the time order of the vector in eq (2-4)
reversed. We also note that eqs (4-3a) and (3-11) are identical in form. This
equality implies that the MMSE estimate of the AR observation process is
obtained when the prediction error filter coefficients are identically equal to the
AR process coefficients. Figure 4-1 shows the synthesis and analysis procedure.

U (n) (x(n-1) I(n-2) (n-P)

z z I

( ) (x (n-2)

Hx (n-2)

LMxnk

zw

SYNTHESIS ANALYSIS

Figure 4-1
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With I(n) and uL(n) initially considered as nnzrandomt processes, further
insight can be obtained by considering the z-transforfn of

MH
L(n) = JAM(k)2L(n-k) + u(n) *~4-4)

k=1 -

so that
MH

X(Z) = - A(k) X(Z)Zk + U(Z). (4-"5)
k=l

Bringing the summation to the LHS, we can write

M (k)Z" X(Z) =u(Z) 
(4-6)II

H
where AM(O) = I. We now define a filter representation for the model process as

-M H k-I

HM(Z = ,AM~) (4-7)

so that

X(z) = HM(Z) 3.(z). (4-8)

Eq (4-8) indicates that X (z) is the output of the filter HM (z) with input IU (z).
Similarly, the z-transform of eq (4-1b) where 2x (n) and , (n) are considered non-
Madom is expressed as

PH
E(Z) = y,_PA(k)z-k X(z) (4-9a)

t We initially consider non-random processes since the z-transform of a random process is not

defined.
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we Hp(z) X(z) (4-9b)where •=-

HF(Z) p (k)z-k (4-10)

and
Ap(0)=. (4-1)

When P>M, consider the case

H AH(k) k<M
= 4(4-12)

,[0] k>M.
We then have

HF (Z) = HM(z). (4-13)

At this point, we can now consider the input and outputs of these filters to be
random. Using eqs (4-8) and (4-13) in eq (4-9b)

E (Z) = HM(Z) HM (Z) JU (2) = U (Z) (4-14)

In the time domain, eq (4-14) is equivalent to

S(n) = u (n). (4-15)

And so, under the condition that the prediction error coefficients are
nical to the coefficients of the AR model process and under the aaMa tion

that the AR process is the exact model of the observed process, the prediction
error filter output g (n) is a white noise vector equivalent to the AR model white
noise driving vector. However, it must be emphasized that the use of an AR
process with a white noise driving function is usually an approximate
representation; i.e. ,it is not used to describe the underlying physical mechanisms
which give rise to the random processes. Rather, it is a representation which has
a system transfer function given by eq (4-7). We must therefore make a
di1Llction between the model of the processes (synthesis) and the estimation
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process (analysis)[l]. In general, the output a (n) of the linear predictor is not a
white noise vector output due to the approximate representation of physical
processes by an AR model. It is also due to the fact that we often do not have 'a
priori' knowledge regarding the values of the coefficients of this approximate
model. As a result, we must estimate these coefficients from the observation data
as we obtain it. With a limited amount of data, the filter coefficients are only
estimates of the AR process coefficients.

For stationary processes, these coefficients could be determined through
estimates of the multichannel correlation matrix lag values and the Levinson-
Wiggins-Robinson algorithm [3]. Although, other methods proposed by Strand-
Nuttall and Morf-Vieira have been developed [24,25,30,31] with improved
performance with limited data. For non-stationary processes, adaptive schemes
must be considered. We will address this topic in a subsequent report.

At this point, we note that eq (4-15) resulted from the analysis
procedure[via a linear prediction error filter with coefficients given by eq(4-12)]
of the process synthesized by eq (4-4). If IL (n) is assumed to be uncorrelated
across channels, the resulting , (n) is also uncorrelated in time and space (i.e.,
channels). In general, as noted in the previous section, Ii (n) may possess
arbitrary correlation between the J channel elements. Therefore, the vector f (n)
will retain a residual correlation over the channels due to the spatial correlation
of u (n).

Since the matrix RE(O) = E [c (n) 0H (n)] is Hermitiant, and positive semi-
definite, we can perform an LDLH decomposition* such that

Ree (0) = Ly Dy L.H. (4-16)

Solving for Dy

D=LyL Ree(0)(Lyl)H (4-17a)

=Ly-1E [r(n) E•H(n)] (I.f-1)H (4-17b)

t It is noted that ip general the correlation matrix Re (1) is not Hermitian for W#O.

* Other decompositions could have been used such as Cholesky or tnilary(5 1, however, the motivation for the
LDLH decomposition is noted at the end of this section.
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-E [Ly-lr(n) F.H(n)(Ly-I)H] (4-.17c) :-

=E [X (n) Yl(n)] (4-17d)
where

S(n) =- L (n) (4-18)

so that the vector y (n) contains uncorrelated elements. Also,

E [(n) 0 (n')] = [0] n * n'. (4-19)

Then, using eq (4-18) to solve for &(n) and substituting this result in (4-19), we
obtain

E [Ly X (n) Y1 (n') Lý] = [0] n * n' (4-20)

so that
Ly E [: (n) Y (n')] L.' = [01 n•* n'. (4-21)

Finally,
E [y (n) Y (n')] = [0] n* n'. (4-22)

Eq (4-22) implies that 2 (n) retains its temporal decorrelation while eq(4-17d)
denotes its spatial decorrelation. When

(H
H IAM (k) k<MAp - (4-23)

A [0] k>M

the output of the first filter stage converges toward IL(n), so that eq (4-18)
becomes (noting that Ree (0) a Ruu (0) and the uniqueness of the LDLH

decomposition)

X (n) = Lg-1 E (n) = Lu-lu (n) (4-24a)

Lu- ILu 1(n) (4-24b)

z. (n) (4-24c)

where eq (3-9) was used to obtain eq (4-24b). Thus, as the filter coefficients

converge to the coefficients of the AR process, 7 (n) approximates the spatially

and temporally whitened process &(n). In addition, $(n) has been obtained through

a causal and causally invertible transformation of the original observation process
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2L (n); ie. the input vector 2 (n) could be recovered through an inverse filter

operation on I (n). This "information preserving" feature of y (n) justifies its use

in a likelihood ratio test.

A procedure that could be used to obtain the estimate Lu-1 consists of
estimating the correlation lag values of Re(O) using time samples of & (n). An
LU decomposition of this matrix would provide Ly. The inverse matrix LI

would then be the required estimate Lu-1. An alternate approach based on a
Gram-Schmidt procedure will be investigated using correlation lag estimates of
RE(O). The motivation for considering the LDLH decomposition is based on the

anticipation of utilizing a singl stage recursive procedure to obtain the filter
coefficients required to estimate $(n) (see section VI and [36]).
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V. MULTICHANNEL LIKELIHOOD RATIO
A. DERIVATION

In this section, we develop a multichannel likelihood ratio for the detection
problem of eq.(2-1);ie.

HI: x(n) -•&(n) +c(n) + w(n) n -,2...,N (5-1a)

H0 : x(n) = c(n) + w(n) n = l,2,...,N (5-1b)

where each of the complex vectors are Gaussian, J x I vectors and &(n) is a
baseband observation vector. The methodology derived here stems from the
considerations presented in [51] for real processes. Utider hypothesis H1, the

multivariate joint Gaussian density can be written as the product of conditional
densities so that

N

Px(2i,nlHi) = P[XI(1)IHi)] 1" p[P(n)fl)&,n-1,Hi] i-0,1 (5-2)
n=2

where
T = T T(2)'".T(n)] (5-3)

xT(k) _ [xl(k) x2(k)...xj(k)] (5-4)

and

•1,1 =&(1) (5-5)

and all the conditional densities are Gaussian. The mean of the multivariate

conditional density pL2(n)2Ll,n-l,Hi] is J(nln-1,Hi); ie. the linear MMSE predictor

of 2L(n) using past data A l,n-I and assuming Hi is true. The JxJ covariance maiiix

of this density function is the conditional covariance matrix Kx(nln-1,Hi) such

that
Kx(nln-l,Hi) = E{([(n) - &(nln-1,Hi)][1(n) - ±(nln-1,Hi)]H} (5-6a)

= E[z(nJHi)(zH(nIHi)] n = 1,2,...,N

i = 0,1 (5-6b)
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where

EfnlHi) = x(n) - P(nln-1,Hi) i = 0,1 (5-7)

is the zero-mean MMSE vector. Assuming wide-sense joint stationarity on the

kd~ass processes , the conditional density functions can be expressed in terms

of the quadratic form* such that
p[A(n)Lx I ,n- 1 'Hi] =

I 1(xp{[nx (n) - a(nln- 1,Hi)][Kx(nIn- 1,Hi)]'l [(n) - J(nln-l,Hi)]HH)= n)JIKx(nln- 1,Hi-)

i = 0,1. (5-8)

Using eq(5-7) in (5-8), we obtain

p[x(n)lx I,n- 1 Hi] =

I exp{- FH(nIHi)[Kx(nIn-1,Hi)]- lE(nIHi)) i = 0,1 (5-9)=(n)JiKx(nln. 1,Hi)I

where

pLx(1)IHil = pi( 1)IHiJ =
1 exp1 H(I Hi)[Kx(IIHi)]- (I1Hi)} i = 0,1 (5-10)

(=r)JIKx( 1 I0,Hi)l

and

a (l10,Hi) = 0 i =0,1. (5-11)

We can now express the likelihood ratio for the multivariate joint Gaussian

density functions as

0 The condition of wide-sense stationarity provides specific relationships between dte auto- and cross-correlation
functions of the in-phase and quadtuuie components. These relationships enable the multivariate Gaussian density
function to be expressed directly in terms of the complex random vectors as given by eq(5-8).
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Px (-1 ,NIH1) (5-12a)

AH0  Px(I1,NIHo)

N(P[x-(1)IH1 I- 1p [x-(n) Ix-l,n- ,H1])
n=2

- N (5-12b)

(p[x(1)IH 0 ] rI p[x(n)Ix1,n-1,H0])
n=2

where the last equality results from eq(5-2). Substituting eqs(5-9) and (5-10) into
(5-12b) and taking the natural logarithm, we have

N
n- IKx(nln-1,H 0 )I exp{-cH(nH 1 )[Kx(nln-.IHI)-l E (nIH 0)]

lnA l" HN = In n=
Ln=1fl' IKx,(fln-1 ,H 1)I exp{-I~H(nIH0)[Kx(nln-I1,H 0 )]- 1 (ntH 0 ))}

(5-13a)
N -IKx(nln-1,H0)l

=n,=l Llnlx(nln- ,H1 )I + l•H(nIH 0)[Kx(nln-l'1 H0 )l-lg (nIH0)
"- EH(nlHl)[Kx(nln"I,H1)" 

1 )1(nlH 1)]
(5-13b)

Eq (5-13b) can be simpified further by a diagonalization of the conditional
covariance matrices. Since these matrices are Hermitian, we can perform their
LDLH decomposition such that

Kx(nln-l,Hi) = L.InlHi) DlnlHi) Iy(nlHi) i = O,1 (5-14)

where the matriA Dy(nlHi) i=0,1 is a diagonal matrix with elements dT (nlHi). In

the discussion below, we note that K.(nln-l,Hi) is a deterministic quantity[59].

We therefore consider this matrix as well as those on the RHS of eq(5-14) as non-
random. Solving for DlnIHi), we have from eqs(5-14) and (5-6b)
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D,ýn~i)Ly (njHi)Kx(njn-1,Hi)[Ly(nIHi)f1 j = 0,1(-1a

L (niHi) EIZnIHi)(e~(nIHi)] [1ý_ I(nIHj)]H (5-15Sb)

E{Ly1(nIHi\ r,(nIHi)eH(njI1i) [-1I(jjij (5-15c)

EL~nIHi)9.'(nIHi)] i = 0,1 (5-15d)
where

-1
X(flIHi) = L., (nIHi)f,(nIHi) i = 0,1. (5-16)

Eq(5-15d) implies that $%nIHi) contains uncorrelated elements across the channels.

From the orthogonality condition, we have
E[&(nIHi)fH(nit Hi) = [0] n -4n' i = 0,1. (5-17)

Solving for F,(nIHi) in eq(5-16), eq(5-17) becomes

n: nnIH)]i = 0] 1(-1a

so that

L..$nIli) E[X(nIHi)p(n'IHi)] [L.- (n I H,)]H = [0]

Since the matrices L.$nIHi) are, in general non-zero, it follows that

E[YnIHi)i'(n'IHi)] =[0] n 4: n' i = 0,1. (5-19)

In summary,

E[v(nIHi)P'(nIjHi)] ynIHi = n' i = 0,1. (5-20)

From eq(5-14), we now have

Kx (nln-1,Hi) = [L Y(nli] R nlHYIDI( 1n~) = (5-21)
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and
IK~(n~nH 1HI H(nIHi)I i=0, I (5-22a)

= ID.$njIHi)I (5-22b)

=Hd T (nIH) = rj, 2 l-i i=01I(52c

where
IL-nI~)I 1i = 0,1 (5-23)

and

dT(nIHi) = E[Uyj(nIHi)I I = (T 2.(nIHi) i = 0,1. (5-24)

The quantity (T 2(nIHi) denotes the variance of Yj(nli~i). Using eq(5-21), the
quadratic terms in eq.(5-13b) become

jH(nlHi)[Kx(njn-1,Hi)]-lg(nIHi)=

- £"(nIHi) [Ly(nIHi)]1 D,' (nIHi)L,' (nIHi)f.(nIHi) i=O, 1 (5-25a)

- Li' (nIHi)E(nIHi)IH D' n~ L (njHi)&(nIHi)] i=0,1 (5-25b)

= jkI(nIHi)D,- (njHi)$(nIHi) i = 0,1 (5-25c)

= H 121 i =0,1l (5-25d)
j=1 %y(nIHi)

where the last two equations result from eqs(5-16) and (5-24), respectively.
Using eqs(5-22c) and (5-25d) in eq(5-13b), we obtain
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2
J f (nHO) -- j(nIHO)12 I.'yj(nIH 12

=-H + 2 2
ja nI y (nJHHI) aj (nIH0) a.j (nIHI) J

Eq(5-21) is the multichannel likelihood ratio for wide-sense, joint
stationary, Gaussian processes. It represents a generalization of the single channel
likelihood ratio reported in [6,7,23,39] for Gaussian processes. In section IV, we
discussed a two stage filtering method using multichannel linear prediction
filtering to obtain (nl!Hi). For a kno2wn correlation function under each of the

two hypotheses, two sets of filter coefficients and error variances can be obtained
exactly, through the multichannel Yule-Walker equations. In this case, J(nIHi)
will be a MMSE output of the filter for which the hypothesis Hi is true. The other

filter output, however, will increase in terms of its average output magnitude.
Eq(5-21) indicates that when H0 is true, the last term will contribute a larger

value in a negative sense, causing the likelihood ratio to decrease. Alternatively,
when H1 is true, the second term increases in a positive sense so that the

likelihood ratio increases. For the unknown correlation case, the filter
coefficients and error variances must be estimated. In this case, eq(5-21) becomes
a generalized likelihood ratio and is therefore suboptimal. From one set of
observation data, we must estimate the parameters (ie. the filter coefficients and
error variances) for each filter assuming the appropriate hypothesis is true. In the
practical implementation for this case, we must assume that the MMSE filters
under each hypothesis have distinct orders so that the likelihood ratio will, in
general, have a value other than zero. This assumption is justified, for example,
when characterizing the observation data as autoregressive processes where the
order of the process under hypothesis HI(signal present) is larger than that under
H0 (signal absent). For single channel processes, these considerations have been

treated in [6,8].
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B. THE SPECIAL CASE OF INCOHERENT INTEGRATION
In [59], several limiting forms of the single channel likelihood ratio are

discussed. They include (1) the detection of a deterministic signal in additive
white Gaussian noise, (2) the detection of a non-white Gaussian signal process in
additive white Gaussian noise, (3) the moving target detection (MTD) algorithm
for the detection of a deterministic signal in non-white Gaussian noise [60, 61]
and (4) the detection of a non-white Gaussian signal process in additive non-white
Gaussian noise [62]. It is also shown [59] that this likelihood ratio contains the
algorithm developed [63] for the detection of a deterministic signal in additive
non-white Gaussian noise of unknown correlation statistics.

One limiting form of this likelihood ratio which has not been noted is the
case of uncorrelated signal processes in additive white noise. In this case, the
signal is a white noise process. Since past values of such a process are
uncorrelated with present and future values, the coefficients for the MMSE
estimation are zeroes in the single channel case. Thus, the error signals in this
case are identical to the observation processes. For J=1 and known variance
terms, we have

o 2 (H0 ) = a2 (5-22a)

and
02(H 1) = a 2 2 + 0 (5-22b)

2 2

where as and a are the known variances associated with the signal and white

noise, respectively. Absorbing the constant term into the threshold, eq(5-21)
becomes

InA N jx[n2  jn)2 (5-23a)
n=1l aw as + wJ
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2
U 2 n 2  (5-23b)

gw(as + Y W) n=-

Eq(5-23b) is the likelihood ratio for complex, uncorrelated signal
processes in additive white noise. Its form is noted in [12,Part I,Chap. 2] for the
case of real processes. Eq(5-23b) is also informative from another point of view.
We recognize that it has the form of an incoherent integrator. In section VI, we
discuss the implementation of eq(5-21) with a dual filter strategy, where each
filter is designed for the hypothesis Hi i=0.1. Eq(5-23b) indicates that if the

coefficients of these filters are set to zero, the likelihood implementation becomes
a simple incoherent integrator. More importantly, this consideration reveals the
useful role of the filtering process; ie., when the filters are used as prediction
error filters, they provide the means to obtain coherent integration. This
integration gain is achieved when the signal process contains pulse-to-pulse
amplitude and phase correlation. The detection performance for various signal
correlation levels will be described in forthcoming reports.
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VI. LIKELIHOOD RATIO IMPLEMENTATION SCHEME

A. SYSTEM ARCHITECTURE
A block diagram of a system that approximates the likelihood ratio of eq

(5-22) is shown in Fig 6-1. It is recognized as the multichannel extension of the
implementations reported in [8,23]. The specific choice of the prediction error
filter structure will depend on the assumed underlying model of the observation
process [14]. A forward prediction error filter using a tapped delay line
architecture is shown in Figs. 6-2 and 6-3. The lattice structure which utilizes
both forward and backward coefficients is shown in Figs. 6-4 and 6-5.

We note that the architecture in Fig 6-1 utilizes two prediction error filters
(PEF) implemented in parallel with each designed to be an optimal estimator
under the given hypothesis. As noted in section V.A, a linear filter of a higher
order may be used on the filter selected under H1 as compared to that for Ho if
the underlying process is assumed to be an AR process of a higher order with the
signal present [8,23]. Under this condition, when hypothesis Ho is true (i.e., no
signal present), both filters provide a MMSE output when the optimum filter
coefficients are determined. When HI is true, the filter designed for Hi adjusts to
the new process. However, the filter for Ho produces a much larger error output
since this lower order filter now operates on a higher order AR process and
therefore cannot adapt to the underlying process coefficients. As a result, the
second summation in eq (5-22) increases. Since this term provides a positive
contribution to the likelihood ratio, it is the mechanism which raises the
likelihood above a predetermined threshold under H1.

B. FILTER COEFFICIENT DETERMINATION

The determination of the filter coefficients can be realized via several
approaches. For stationary processes, the most straight forward would be a

solution of the Ap(k) coefficients via the Levinson-Wiggins-Robinson (LWR)

method; howevei, the Strand-Nuttall and the Vieira-Morf methods may also be
considered [24,25,29,30,31]. For the LWR method, estimates of the correlation
lag values as well as the prediction error variances are obtained by recursive
update. Since this method utilizes correlation lag value estimates, it is anticipated
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to yield less accurate estimates of the coefficients than the Strand-Nuttall or
Vieira-Morf approaches for the same reasons as noted by Burg [35] in the single
channel case; ie, the unbiased estimate of the correlation matrix may not be
positive semi-definite and therefore physically unrealizable. On the other hand,
the biased estimate may yield inaccurate estimates, especially for limited data.
The Strand-Nuttall method (the multichannel generalization of the Burg
algorithm), however, estimates the filter coefficients directly from the data thus
bypassing the requirement to estimate the correlation matrix. Actually, the
reflection coefficients for the single chan:iel or multi-channel cases are
determined by this algorithm and applied to the lattice filter structures shown in
Figures (6-4) and (6-5), respectively. From these values, autoregressive
coefficient matrices AH(k) [as well as the backward coefficients] can be
determined.

The additional matrix coefficient lb-1 discussed in section IV must also be

determined in order to use the simplified form of eq(5-21). This coefficient
completes the spatial whitening of the f, (n) process via eq(4-18). As noted in
section IV, the elements of this matrix could be obtained by performing estimates
of the correlation matrix REE(O) = E [F (n) EH (n)] using the output f, (n) from the
first stage of processing. An LU decomposition of this matrix would yield the
lower triangular unit diagonal LI matrix which is an estimate of Lg. In [361, a

recursive procedure is being considered which computes the filter coefficients for
the structure shown in Figure 6-3. This single stage filter is equivalent to that
shown in Figure 6-2; however, these coefficients are obtained via a single
recursive procedure.

For the LWR method, the unbiased cross-correlation function at lag I between
channel i and j at the Nth data sample is calculated as

N 1 N ,
YN " I xi(k)xj (k-1) ij = 1,2,...,Jk-I+l

I = 0,1,2,...,P (6-1)

where P is the filter order and N is the total length of the time series with N>>P.
Since we are considering jointly stationary processes when using this approach,
we also have
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N•I N •(= [Nij (-N)] (6-2)

Eqs (6-1) and (6-2) enable us to fill the entire correlation matrix of eq (2-3) with
updated estimates. The expression in eq (6-1) can be made computationally
efficient by re-expressing in terms of the recursive form

AN 11
rij (I) =-- - x, (N) x* (N-I) + x i(k) x. (k-I) (6-3a)

J N- kN I +1

x •(N) x (N-I) [N4-1
iN- + ] x (k) x* (k-1) (6-3b)
N-I= N N- N4-1 kc-l +1

x i(N) x"' (N-I) N4-I- N-I ij = 1,2,...,J= NJ + t•ri (I)
N-I = 0,1,...,P. (6-3c)

Likewise, the biased* estimate of rij (I) is expressed as

AN I N
r ij (x (k) xN (W) (6-3d)

k. 1+1

x xi(N) xj (N-I) N-I] (I) i= 1,2,...,J

N N N ji ,1..'

I =0,,...,P. (6-3e)

Eqs (6-3c) and (6-3e) enable the current estimate of rij (I) to be made in terms of
A

past estimates rij (I) without a complete recalculation using all prior data.

• The biased estimate of rij(I) is most often used since it ensures positive semi-definiteness of the correlation

matrix[25,35].
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C. ERROR VARIANCE DETERMINATION

The unbiased estimate of the prediction error variance for the jth channel
under Hi for i = 0,1, at the Nth data sample could be calculated using the sample
variance; ie.

N2

o; (NIHi) =- I ij (kj)-7j (NI)2 (6-4a)A2 N-i-"(k•) y (l~ i = 0,16-a
k-I

where

- 1 N•'j (N{Hi) = •Y j 0l1-1) i = 0,1. (6-4b)

I-I

A recursive form for A 2 (NIHi) can be expressed as (sce Appendix C)

A2 (N-2)^2 (1 2
(NH)-(N-i) N j(NHi)l

N (N-Ill-I 1)]1 -[,y. (NIHL) -Yj,(N-_I[H. + l' (N[I-l) Yj (N- I[Hi)]

N J I (N-J1IH) 2

N I (6-4c)

A very informative discussion regarding the effect of error variance
estimates on the single channel likelihood ratio is presented in [14].
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VII PROPOSED INIVESIGATION

A. STATIONARY GAUSSIAN PROCESS SYNTHESIS

In this part of the report, a future investigation is proposed. We will
assume the presence of stationary, Gaussian processes for both signal and noise.
The analysis will be further divided into two areas: (1) signal in additive white
noise and (2) signal in additive non-white (clutter) plus white noise. The
principal objective will be the determination of receiver operating characteristic
(ROC) plots in terms of probability of detection (Pd), probability of false-alarm
(Pfa), the signal-to-noise (S/N) and signal-to-clutter (S/C) ratios associated with
multichannel processes. The analysis will also consider the number of channels
and the number of pulses as parameters. Performance comparisons will be made
between the single channel case and the multichannel case as well as to an analytic
evaluation described later in this section.

The synthesis of the random observation processes under Hi for i=0, I is
now addressed. These processes will be utilized in the performance of a Monte-
Carlo analyses for the determination of the ROC plots. Two methods will be
considered.

METHOD I
In the first approach we can characterize the observation processes as

multichannel AR processes under each hypothesis. We then have
Mi H

xL(nlHi) = - m AMi(kIHi)x(n-k) + u(nlHi) i = 0,1 (7-1)
k=1

H
where Mi , AMi(klHi) and Mj (nlHi) denote the model order, the matrix coefficients

and the white noise driving term undei each hypothesis, respectively. In the
single channel radar problem, analyses have been conducted to model radar
clutter with AR processes of relatively low order [20,211. It has also been noted
[8,19,22] that the sum of two AR processes yields an autoregressive moving
average (ARMA) process which in turn can be modelled as a higher-order AR
process. Therefore, assuming that the signal and clutter noise are eaci,
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characterized by an AR process, we would expect that MI > Mo. For single
channel processes, values of M0 = 1 or 2 and MI = 4 or 5 have been n ported
[8] for radar applications. The extension of this work to the multichannJ case
remains an open area of research. Eq (7-1) could be utilized to generate the
processes under each hypothesis using predetermined values for the coefficients.
This approach would be useful in the diagnostics of the filtering scheme; i.e., one
could validate that the filter coefficients converge to the known preassigned
model coefficients as well as assess the convergence rate and final error variance.
This approach, however, does now allow control over the variations of the
signal-to-noise (i/N) and/or signal-to-clutter (S/C) ratios for parametric
performance evaluations.

MEJEOD 2

In the second approach, we consider the multichannel extension of the
method suggested in [23]. A complete description of this approach is presented in
[74]. This is shown in Figure 7-1 where we generate the Jxl vectors s(n) and c(n)
as distinct multichannel AR processes.

u SIGNAL 1(n)

H u (n) CLUTER (z) c(n) '- (nIHx = 1(n) + n c(n) + w(n)

H% f An &(n~l 1%) = (n) + _w(n)
w ~(n)

L

Figure 7-1

The vectors Us(n), uc(n) and w(n) are zero-mean, Gaussian white noise
vectors uncorrelated in time but have an arbitrary correlation across channels as
described in sections II and III. In this case,
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E [-U-s lnu- 0n')= 10[O 1u(O

S u( ) i=0 (7-2)
[0] 1 •I0

E [iil (n) uric(n-I)]= CRuu(0) I= 0 (7-2)

C Ruu(0) 1=0 (7-3)

E~~~ ~ [w()-H~4] 0] 1•#0
-- . Rww(O) I=0 (7-4)

where SRuu(O) and CRuu(O) are the J x J correlation matrices of the white noise
driving vectors Us (n) and pc (n), respectively. The JxJ matrix Rww(O) is the

corresponding matrix for the additive white noise vector y(n). In general, they
have off-diagonal components. The functions Hs (z) and He (z) are the filter
representations for the synthesis of the signal and clutter processes, respectively.
For the generation of signal AR processes we would use

Ms

I(n) = -1 A's(k) &(n-k) +ju s(n) (7-5)
k=1

where Ms is the order of the signal model and AsH(k) is the matrix coefficient of
the process.

We must now establish a procedure to determine the matrix coefficients

A5 (k) which when used in eq (7-5) will yield realizable values for s(n). The

cross-correlation functions for the signal and non-white noise processes are to be
selected using the functional forms [74]:

0(Pgij) =giiagjfg (Xgij, I--Igij) exp(jj (I)g0 (0)1fg g1 -- gl gij , Il-lgij) 11-o Ogij -gij

g = s,c (7-6a)
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where g=s,c refers to signal and non-white noise, respectively; Pgij is the cross

correlation coefficient; cgii and Ygjj are the standard deviations for the channel i

and j processes; Xgij is the temporal cross-correlation coefficient and is a measure

of the correlation between pulses (relative to Igij) across the channels i and j for

i•j [74]; for i=j, Xgii is a temporal autocorrelation coefficient for the pulse-to-

pulse correlation on channel i [23]; 0gij(I) is the phase of the cross-correlation

function and allows for the modeling of processes with uneven spectral shape
including Doppler shifts. The functions f(Xgij.,-Ig.i) are selected to appropriately

shape the autocorrelation (i=j) and cross-correlation (i * j) functions. The
parameter Igij is the lag value for which the function f(.) has a peak value of

unity and accounts for the fact that the cross-correlation function does not peak at
1=0 as the autocorrelation function does. Eq(7-6a) coald be modified using the
relation

IpgijI = pgij exp['jOgij(0)]. (7 -6b)

For the autocorrelation function (i=j), we note that Ipgiil=l, 1gii= 0 and

0g9j(0)=O [see 74] so that eq(7-6) reduces to the expression

Gg) 2 fg(;ýgii')exp~j[ 0g ) g = s.c. (7-7)Rg(I =gii 9 1 i

In reference [74], the selection of the fg(-) functions as well as restrictions

on the correlation function values are discussed to ensure conditions such as the
positive semi-definiteness of the correlation matrix.

The following procedure is then used to generate the time sequenced values

1231:

(1) the desired shapes of the autocorrelation and cross-correlation values
are obtained using the functional forms above.

(2) the order of the AR process (for synthesis) is selected based upon
requirements to fit the desired spectrum.

S c

(3) the values of Ri.(I) and Rij(I) are used to form the matrix elements of

Rss and Rcc.
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(4) the multichannel Yule-Walker equations are solved to determine the
H

matrix coefficients Ag (k) for k = 1, 2, ...,M,; i.e.,
H H = '(78Ag [Rgg] = U[4fg9 [10...[o11 g = s,c (7-8)

where
H H H H

A.g = [I Ag (1) Ag (2 )...Ag (Mg)] g = s,c (7-9)

[T,fjg = E[ glg] g = s,c (7-10)

T
= [T(1) JT(2)... uT(N)] g = s,c (7-11)

uT(m) = [ul(m) u2 (m) ...uj(m)] m = 1,2,...,N. (7-12)

(5) the values of AsH(k) are now substituted into eq (7-5) and used in the
generation of s(n).

The vector x(nlHi) i--O, 1 is thus obtained as described in Fig 7-1.

B. ANALYTIC PERFORMANCE ANALYSIS

With the matrices RU and Rc¢ specified using elements determined from eq
(7-6), it may be possible to proceed with an analytic determination of the
probability of detection (Pd) and probability of false alarm (Pfa). For the single
channel case, analytic expressions for these quantities are discussed in [23]. In our
notation

00• [exp -1 d}

0 det [1-2j4 (Rd+ Rs)]*R*] (7-13)

and

1 00e -"• [exp ('JAT) 4I]d}.

e __1_0_Re___ d4

Pfa= +- JR { det [i-2j4 Rý RI (7-14)
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where T is the threshold and the single channel correlation matrices are expressed
as

R d =R + +R (7-15)

R= [R-1- (Rd+ Rs)-I (7-16)

Rs= E [ ssH] (7-17)

Rc= E [.QrH (7-18)

= [S(1) S(2)...S(N)] (7-19)

£T= [C(l) C(2)...C(N)] (7-20)

Equations (7-13) and (7-14) will be considered to determine if they can be
generalized to the multichannel case using the matrices RU, RPQ and Rww.
Receiver operating characteristic curves can then be generated in terms of Pd
versus Pfa for the parameters noted in eq(7-6).
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C. MONTE CARLO ANALYSIS (STATIONARY PROCESSES)
The simulation procedure discussed in VH-A will be used to synthesize

multichannel observation processes under hypotheses H0 and Hi. A sequence of

N data samples will be generated for the parameters specified in eq(7-6). The
threshold level T for a given trial will be established by generating _(nIH0) using
ns samples where ns satisfies the condition[17] ns > 10/Pfa. The simulation will

then be rerun to generate N observation processes &i(nlH1) as inputs to the
likelihood ratio. For stationary processes, the filter weights will be determined
as discussed in section VI B. The processes F,(n) or 1(n) will then be computed in
terms of the likelihood ratio [see eq (5-21) as well as Fig. 6-1]. The number of
threshold crossings shall be used to compute Pd.

Since the number of samples required to establish a given Pfa varies
inversely with Pfa, low Pfa levels will require long computer run times.
Therefore, the Monte Carlo approach may have to be limited to values such as Pfa
- 10-3 with the resulting analyses used to confirm the analytic solutions of section
VII - B.

D. POSSIBLE EXTENSIONS

The generalization to non-Gaussian processes can follow the approach
utilized in [4,6]. For the single channel case, Metford formed a process
consisting of a variance normalized partial summation of innovations processes.
In [6], he proved, (through a lengthy algebraic manipulation), that this process
satisfied a central limit theorem approaching a Gaussian distribution with a rate
of convergence of N-1/2 (where N is the number of pulses). It was shown that
the resulting likelihood ratio was identical in form to the single channel
innovations based detection algorithm (IBDA) established for Gaussian processes,
but with the additional requirement of processing over N pulses; i.e., the
likelihood ratio converged to the IBDA with a rate of convergence 1/4N for
large N. The exact size of N was not investigated specifically in [6], but in [4] it
is indicated that these processes are expected to be Gaussian even for "a small
number of samples."

In the previous sections, stationary observation processes were assumed.
The condition of stationarity will be maintained for the major portion of the
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performance evaluations. However, the extension to adaptive methods to update
the filter coefficients can be considered. These methods are important when
considering non-stationary processes with changing statistics. Consideration will
be given to methods such as the least-mean-square (LMS) algorithm, recursive-
least-squares (RLS) [70] and adaptive lattice filter methods.

The potential for detection performance improvement when utilizing 'a
priori' information to predetermine the filter coefficients under hypothesis H0 ,
could be considered. In this case, reference data collected on the non-white noise
processes could be utilized to preset the filter weights. In the radar problem, a
procedure similar to the CFAR approach could be utilized in which this reference
data is collected from range cells adjacent to the test cell. Preliminary
consideration was given to this procedure in the single channel case [14, 16] with
considerable detection performance improvement noted.

Another area of investigation would involve model-fitting of vector
observation processes with multichannel time series for specific applications. For
the radar case, single channel clutter processes have been considered in terms of
autoregressive processes [20. 21]. The extension of these analyses to multichannel
processes holds potential for further research investigations which may provide
performance improvement. In addition, the multichannel model-based approach
appears to offer the potential to utilize data from distinct, yet correlated,
processes in the detection problem; ie. if a vector time series exists which models
the individual processes, the likelihood ratio presented here should be applicable.
The above extensions will be investigated as time permits.
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APPENDIX A

In this section, we determine the conditions under which g(n) as expressed
in eq (3-1) is a temporal white noise MMSE output of a linear prediction error
filter. We first follow an argument similar to the abbreviated discussion in [9].
The linear prediction error of x(n) as defined in eq (4-1) is expressed as

F (n) =2 (n) - (nln-1) (A-i)

A

where x(nln-1) represents the estimated vector of X(n) using past data values with
the initial condition 2(lI0) = Q. Using a linear predictor with P past values, we
define

&(nln-1) =Y- , A p(k)x(n-k) (A-2)
k=1

H
where Ap (k), k = 1,2,...,P are JxJ matrices representing the coefficients of the

linear predictor. Substituting eq (A-2) in (A-i)

Fj(n) = x(n) + Y, A p(k)&(n-k) (A-3a)
k=1

Y, A Ap(k),&(n-k) (A-3b)
k=O

H
where Ap(0) = I. Let the concatenated column vector of P+I vectors (each of

dimension J) be defined asT

,ln,n-P = eT(n) xT(n1)-...xT(n-P). (A-4)

H
Post multiplying eq (A-3) by An,n-P and taking the expected value

H H H
E[f(n)jn,n-p] E[A_,n-e.iP,n-P]

H H
= Ap E[2,n.Pn,nrP]
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HH

where Ap and [ Rxx] are defined in eq (4-3b) and (4-3c). The LHS of eq (A-5)
T

can also be written using the Hermitian of xT nP so that

SH HnH
E ( (n) _2 ,n] H E {E (n) [ n)xH(-) ....&nP1

= E [r.(n)x2LH(n)] E [E (n) xH (n-1)] ... E [E (n)-x H(n-P)]}1.

(A-6)

HWe now determine the coefficients of Ap subject to the condition that F(n) is a

MMSE vector. Under this condition,

E [e (n) xH(n-k)] = [01 k>O. (A-7)

Eq (A-7) is the orthogonality condition which states that the error vector is
orthogonal to past observation values. Using this condition, eq (A-6) becomes

HH
E [ (n) n,]H =I• (n) '& H(n)] [0] [0] ... [0]}. (A-8)_n,n-P

From eq (A-3a)

x(n) = F(n) - Y Ap(k)x(n-k) (A-9)
k=1

so that
p

OH(n) = l(n) - x ,H(n-k)Ap(k). (A-10)

k=l
Using eq (A-10) in the RHS of eq (A-8)

E[,(n)_n,n-p]= E[f(n)rHH(n)]- pE[(n)H(n-k)lAp(k) 1[01...[01

4k=
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={[Zf4] [0] [o1..[40]} (A-i l)

where we have again used eq (A-7) to yield eq (A-i l) and [Ef]e is the forward

prediction error covariance matrix. Combining eq (A-5) and (A-i 1), we have

Ap [Axx] = {[Ef'I[ [0] [01...[0o}. (A-12)

Eq (A-12) is the multichannel AR Yule Walker normal equation in
augmented form. It provides a set of JP linear equations to solve for the values of
the matrix coefficients which minimize the mean square error vector. Although
eq (A-12) has often been presented in the literature, the reversed order form of
the correlation matrix has not often been sighted [1]. We will utilize this feature
in Appendix B.

We now show that the vector process f,(n) is uncorrelated in time. At an
arbitrary time (n-I) where 1>0, eq (A-10) becomes

P
0H(n-I) = rH(n-I) - Y 0H(n-k-I)Ap(k). I > 0. (A-13)

k=1
Using eq (A-13) in eq (A-7)

P
E[r(n)jH(n-I)] = E[f(n)EH(n-I)]- 1 E[.()O&H(n-k-I)]Ap(k) = [0]. (A-14)

k=1
From eq (A-7), we have

E [F (n) aH(n-k-1)] = [0] k > 0. (A- 15)

And so, eq (A-14) yields

E[& (n) .a(n-4) = [0] 1> 0. (A-6

Thus, the sequence of outputs from the MMSE prediction error filter are

orthogonal. Since r(n) is a zero mean Gaussian process, its sequence of values

{f,(n)} are mutually independent so that {f,(n)} is a white, Gaussian noise

sequence.
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APPENDIX B

In this Appendix, we show that the matrix coefficients of multichannel
linear prediction for a multichannel random process and the prediction error
covariance matrices are related to the covariance matrix through a block
triangular decomposition. The procedure is a straight forward generalization of
[10]. In this discussion, we are considering the first stage of processing as noted
in sections IV through VI. This stage results in the F(n) vector output. Therefore,
we only consider the the A(k) matrix coefficients here. A treatment which
includes the second stage of processing using the matrix Ly to obtain y(n) is

developed in [36].
Recognizing that RBZa defined in eq (2-5) is Hermitian with non-singular

upper left principal minors, we can obtain

RB LDLH (B-1)

where L. is lower block triangular with the identity matrix I forming the block
diagonal matrices and Dg is a real block diagonal matrix. Solving eq (B-1) for
DFC

Df = Lf RIM1 2

If we consider

1 A (B-3)

we can easily show that

Df,= E [E H (B4)
,N 1,N

where
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T = [c (1) F. (2) ... F, (N) ]T(-)
LN (B-5)

and E(k) is a J x 1 channel vector. Since L. is lower block triangular with unit
diagonal elements, Lt-I has the same form so that eq (B-3) is a causal and

causally invertible transformation of the data.
We now consider the normal equations for a multichannel predictor of

order p such that
AipH[IAx I = I[Ef I T (B-6)

where [ R•xjp is the reversed order multichannel covariance matrix,

H H H H
Ap = [I Ap(l) Ap(2)...Ap(P)] (B-7)

and
IT = {I [0] [0] ...[0]} (B-8)

H
where I is a JxJ identity matrix. The vector of matrices Ap is the vector of

multichannel pth order linear prediction coefficients and [YfJp is the Hermitian,

pth order, mu!tichannel prediction error covariance matrix. Post multiplying eq
(B-6) by Ap, and recognizing that [Zfjp is Hermitian, we obtain

[I AH(1) ApH(2)...Ap(P)][AMx] I
Ap(1)

Ap(2) = [Zf~p. (B-9)

Ap(P)j

Using the relation

GIG = I (B-10)

where GB is the block reflection matrix (i.e., the square J(p+l) x J(p+l) matrix

with JxJ identity matrices along the block cross diagonal), one can easily show

that
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[Ap (P)...Ap'(2) Ap(1) 1][Rx,] Ap(P)-

Ap(2) =MO.fp. (B- 1i)

Ap(1)
- I -

At this point, it is noted that eq (B-Il) results because of the reversed
order of the correlation matrix [l].

We now write eq (B-Il) for p = 0, 1, ..., P = N-I in the combined form as

R(0) R(-I) R(-2) ... R(-P)
HA,(1) 1 [0] R(1) R(0) R(l)...R(-P+1)

A2 (2) AH(I) I R(2) R(l) R(0) ...R(-P+2)

H H H
A 3 (3) A3 (2) A3(1) I "

H- H H HRP)RPI (-)..().Ap(P) A,(P-1) A4(P-2)... 4A(1)1 R(P) R(P-l)R(P-2)...R(0)

I( 1) A22) A(3) ...'A"P) [Ef]o [01

I A•l) AJ2)...Ap(P-I) [Ed

I A3(l) ...Ap.(P-2) [f] 2

f 2[101 I ... [10]flr

(B-12)
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Eq (B-12) is of the same form as eq (B-2). Since the causal decomposition
in eq (B -2) is uniquet, then Lf-7 can be identified with the lower triangular
matrix in eq (B-12). Thus the block rows of L&-I are the multichannel
coefficients for linear predictive filters of orders zero through P = N-1 and the
block diagonal matrix elements of DF. are the prediction error variances
associated with the multichannel filter orders.

I The uniqueness of this decomposition is based upon the specified block form of RBxx defined in
eq (2-5). However, other block forms of Rz could have been made which still retain the
Hermitian property.
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APPENDIX C

In this Appendix, a recursive expression for the sample variance estimate
of the complex quantity yj(nIHi) is derived. The sample mean of the jth channel

sequence yj(nIHi) is given at the Nth time sample as

N
Tj (NIHi) = .. 1 Z yj(IHi) i=0,1. (C-i)

N

By definition, the sample variance of the complex quantity yj(nlHi) is expressed as

N,(NIH-) = -L -Tj(NIHi2 i=O,l(

J N-I k k1 j q, (C-2a)

N

N

= I [ {I [(klHi) -j(NJIHi)] [I(kjHi)-?j(NIHi)] i=0,1
N-1k= (C-2b)

__I ij(kjl-i) 11_yj(k~lýi) *(NJHi)_•j(NJ1-i)7y j(kJHi
N-1 k=1lj

+I;T(ulni)l'l i=0,1.

(C-2c)

Using eq (C-I) in (C-2c)
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6~(NIH,) = -L t Iv.(kIH.-)12 .. L ~(kIHi) _

N-i tJ *Yi(-i = j(I
k1-' k=1 N/~li 1-1 J

- N yj(IlHi)-jL y*(kll-i)

+ N"-L( ~i ' mll) i-, (C-3)
=1 1=1

N 1 N N

N(N-1) I N Nj(I-li)Y'(kIHi) + N

i=0,1,

Interchanging k and I in the second summation as well as k and m in the fourth

6(NI1 t I [ Ij(klnH) I 2 01 (IHi)Y (kIHH
(N ) (N-iT) k- N(N-1) I=k=l

+•". 1 N N

M=lI N2 (N -'I)1= k= yj (I Hi) I (kJH (=0,1.
(C-5)

But the last summation in eq (C-5) is just
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N N)1 : 1: yj(IIIAý) j(kIjlý)

N (N-i)1 k=1

so that

A 2 1 N 2 N N

i=O, 1. (C-6)

To obtain a recursive form for oyj 2(NIHi) we separate out the terr.is involving
'yj(NIHi) so that

-~NH~ L~y.(NIH.)I2 + 2-. (kIj"CHj I-- (NIH) y(NIHi)
(N-1)JiN - N(N-1)

1 N-i

- 4Y(NIH? N-y(j) - -

=1O, k=17
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1 y(l~)2 12 * y( li1
N-I?,( Hjk1)

- (-)y. (NIH) Yy 4(kIHj) .... yj*(NIH 1) tj( HNN1) Jk=1 N(N-1) 1=1

N(N-) I Y y(li j*(jý iOl(-b

so that

-~j IY(NI~) t yj,(kIHi) yj -- (NIHi) Y(-I
NNIk=i NT Yj(-li)

.~ yj*(Nli)7(-liN I X~Y(-I~---- yj( JH i=OI.
NN1= 1 k=1

(C-7c)

From eq (C-6)

cr N 1 -) =- kH 
(( R ,*kH

A2Nk=1l~ (N-1)(N-2) N-i

i=O,1

(C-8)

Multiplying both sides by N-2/N-1,
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N-2 A22 

y*X' lN-i ~ N- J ") ki _rlkH (N-I) L '(I = H1 (Nk=~ Y(IH

i=O,1

(C-9)

so that

-L l j -(kHý 2 =(N -2) ' NV N-i11ý) +yj'N-1IH.)yVj*N-Ili) =
N -1 k ~ l i ( N -i1) .J C 1 a

(N-2) A2 -jý) j j N j jl i o .
(N-1) 'i(C-l0b)

Using eq (C-lIOb) in eq (C-7c)

& NI.) Niy~j(NI~'N'I + (-2)N-~l +Iy.j(N-lHi)I1
N (N-i) i

N N

(N-i)[(L) t j(JH[_LN-i ~~
(N) (N-1) N-1)H~) [()Xyj*klH] iO

1=1 k=1(C-il1)



1 2 (N 2)2 02
-N lj(NI'i~l' (N-1) j (N- IIHi) + Fyj(N-1IIH)I

N [yj(NIHi) yj (N-1IIHi) + yj NIjYN-IH) ] N I7j(N-1IHi)I2

so that
4 2 (NIHJ (N-)A 21 T 1N ~)+I y(Ii

I 1y(Ii 7*(N-1IIHi) +,y~ (NIHi) yj(N-1IlH)J

I N1 Ij(N-1IIHi)I2 (C- I 2a)

(N-2)A2 1N Ii ýyj(NliW - j(N-1IHiI2  (C-12b)
=(N-l)uj(-I~ + 'j1

with initial conditions

aj (I IHi) = 0 i 0,l. (C-13)
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